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We report on experimental and numerical studies of pairs of cavitation bubbles
growing and collapsing close to each other in a narrow gap. The bubbles are generated
with a pulsed and focused laser in a liquid-filled gap of 15 μm height; during their
lifetime which is shorter than 14 μs they expand to a maximum radius of up to
Rmax = 38 μm. Their motion is recorded with high-speed photography at up to 500 000
frames s−1. The separation at which equally sized bubbles are created, d , is varied from
d = 46–140 μm which results into a non-dimensional stand-off distance, γ = d/(2Rmax),
from 0.65 to 2. For large separation the bubbles shrink almost radially symmetric;
for smaller separation the bubbles repulse each other during expansion and during
collapse move towards each other. At closer distances we find a flattening of the
proximal bubbles walls. Interestingly, due to the short lifetime of the bubbles (� 14 μs),
the radial and centroidal motion can be modelled successfully with a two-dimensional
potential flow ansatz, i.e. neglecting viscosity. We derive the equations for arbitrary
configurations of two-dimensional bubbles. The good agreement between model and
experiments supports that the fluid dynamics is essentially a potential flow for the
experimental conditions of this study. The interaction force (secondary Bjerknes
force) is long ranged dropping off only with 1/d as compared to previously studied
three-dimensional geometries where the force is proportional to 1/d2.

1. Introduction
The attraction and repulsion of oscillating objects in an inviscid fluid has been

studied for more than a century (Basset 1887). In general, attraction between objects
occurs when they oscillate in phase and repulsion for out-of-phase oscillations (Lamb
1932). Of particular interest is the case of a single bubble positioned at a distance
d/2 away from the boundary. For a rigid boundary this is identical to two equally
sized bubbles being d apart and oscillating in phase. The bubble is attracted towards
the boundary. Vice versa for a pressure release boundary the bubble is repelled.

The mutual forces generated between oscillating objects have been named secondary
Bjerknes forces after C. A. Bjerknes and his son V. Bjerknes (Bjerknes 1906, 1915;
Leighton 1994); in contrast the primary Bjerknes force is due to the direct interaction
between an oscillating body and a sound field. Numerous theoretical and experimental
studies (for example Crum 1975; Luther, Mettin & Lauterborn 2000; Harkin, Kaper &
Nadim 2001; Doinikov 2004; Illinskii, Hamilton & Zabotskaya 2007) have confirmed
this general picture and detailed the models to account for viscous and close range
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effects. On the experimental side bubbles can be brought into oscillatory motion with a
resonant sound field or by transiently releasing energy. In most of the previous works,
oscillating bubbles were studied using axisymmetry or three-dimensional geometry.
Interestingly, only recently the two-dimensional potential flow has re-gained broader
interest. Wang (2004) and Crowdy, Surana & Yick (2007) used conformal mapping
to solve the flow of two circular disks and planar stirrers, respectively, and Nair
& Kanso (2007) used a Lagrangian approach to describe the coupling of one
oscillating and one rigid object. To our knowledge, very few experiments have been
reported demonstrating the interaction of two-dimensional bubbles: Zwaan et al.
(2007) demonstrated that a single bubble oscillating in a narrow gap can be described
for short times with a two-dimensional potential flow and the classical work by
Dear, Field & Walton (1988) on the collapse of two-dimensional cavities. Yet, the
authors are unaware of previous works comparing two-dimensional oscillating and
interacting objects with a two-dimensional model. However, two-dimensional models
have been successfully used to describe the collapse of cylindrical voids in liquids and
soft sand (Oguz & Prosperetti 1993; Lohse et al. 2004; Bergmann et al. 2006). The
bubbles reported here are created with focused laser light, shaped using a spatial light
modulator (SLM). This newly developed technique (Quinto-Su, Venugopalan & Ohl
2008) allows for arbitrary bubble configurations, in particular it allows to modify the
geometry and size of the bubbles by changing the pattern of the computer-controlled
SLM. In this way it is easy to tune the interaction between the bubbles going from a
weakly to a strongly interacting regime.

This work is organized as follows: First we describe the experimental setup used
to create the bubbles using a digital hologram. Then we present experimental results
for bubble expanding and collapsing at different separations in a narrow gap. In
§ 4 we show the applicability of the two-dimensional model for the experimental
configurations, in particular we first derive the equations of motion for the radial and
the translational motion and compare them with the experimental data.

2. Experimental set-up
In this section we describe the experimental set-up used to create the bubble

pairs using a single laser pulse to create a couple of foci at the focal plane of a
microscope objective. The bubbles are the result of the explosive vaporization of
the liquid following stress confinement (see references in Quinto-Su et al. 2008). The
experimental set-up (Quinto-Su et al. 2008) is shown in figure 1(a) and consists of a
laser, optics for beam shaping, a microscope and a high-speed camera. The laser to
generate the bubbles is a frequency doubled Nd:YAG (Orion, New Wave Research,
Fremont, CA) with a 6 ns pulse duration. The beam shaping is done with a half-wave
plate to rotate the plane of polarization and a telescope consisting of lenses L1 and
L2 to expand it. Then the beam is reflected from a spatial light modulator (SLM) that
changes its phase. A digital hologram is projected onto the SLM, so that the spatial
profile of the reflected laser pulse after being focused is related to the hologram
through a Fourier transformation. To remove the undifracted zeroth order a lens
phase is added to the hologram. A third lens (L3) images the SLM onto the back
aperture of the microscope objective (20×, NA = 0.75) of the inverted microscope
(Olympus IX-71, Singapore). With the appropriate hologram a pair of foci is created
at the focal plane of the microscope objective. The sample is illuminated with the
microscope lamp from the top and the bubble dynamics is recorded with a high-speed
camera (Photron SA1.1, Bucks, UK) at 450 000–500 000 frames s−1 (f.p.s.). Motion
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Figure 1. (a) Experimental setup; the phase of the laser pulse is altered by the SLM, which
is imaged onto the back aperture of the microscope objective. A pair of foci is created in the
focal plane of the microscope objective which is located inside the liquid gap (15 μm in height).
(b) Bubble geometry. The positions of the bubbles (radii R1 and R2) have their centres at r01

and r02 and translate with velocities U1 and U2.

blurring is mostly avoided by limiting the exposure time for each frame to 300 ns.
The two-dimensional narrow gap is made with two spacers with a height of 15 μm
which are sandwiched between a couple of microscope coverslips (#1, 130–170 μm
thickness). The gap is filled with magenta ink (MAXTEC universal ink refill, Kowloon,
HongKong) to obtain stress confinement and still transmit sufficient light to record
the events at the short exposure times. We measured the density and the viscosity of
the water-based ink. The density is ρ = 1046 ± 1 kgm−3 and the kinematic viscosity at
25 ◦C is ν = (1.98 ± 0.4) × 10−6 m2 s−1. In the experiment the intense illumination will
considerably heat up the light-absorbing ink, still below the boiling point. Thus we
expect a decrease of the kinematic viscosity and roughly estimate the magnitude by a
factor of 0.5 which is found for water when heated from 25 ◦C to 50 ◦C. Additionally,
we added some 2 μm polystyrene particles to the ink to visualize the flow field.

2.1. Geometry of the bubble pair

Figure 1(b) shows the configuration of the bubble pair with radii R1 and R2. The
vectors to the centre of each bubble are r01 and r02 and their translational velocities
are U1 = ṙ01 and U2. The distance between them is d = r12. Further we make use of
the unit vectors n12 = (r2 − r1)/|r2 − r1| and n21 = −n12. Also, we can describe the
positions relative to the centre of each bubble using the vectors r1 and r2, respectively.

3. Experimental results
In this section we first show the dynamics of equally sized bubble pairs created

at three different distances spanning the range from weak to strong interactions.
To specify the interaction we make use of the non-dimensional standoff distance
γ = d/(2Rmax) which for the experiments shown varies from γ = 0.65 to γ = 2. In
addition, we also present one case showing two bubbles of unequal sizes. The next
four figures (figures 2–5) are arranged in the following way: figures 2(a)–5(a) show
the high-speed recordings and figures 2(b,c)–5(b,c) the bubble radii and distances
as a function of time, respectively. For figures 2(a)–5(a), the circles (o) depict the
position of the laser foci where the bubbles are created and the asterisks (*) their
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Figure 2. (a) Two equally sized bubbles created at a distance of 137.5 μm. The framing speed
is 450 000 f.p.s. and the frame width is 256 μm. (b) Symbols showing the measured radii as a
function of time for each bubble. (c) Distance between the bubbles’ centres as a function of
time. The solid lines in (b) and (c) are solutions of the two-dimensional potential model.

centre of mass. Time zero is defined when the bubble is created, i.e. the laser pulse
arrives at the liquid. Each data point in figures 2(b,c)–5(b,c) corresponds to one
experimental frame from figures 2(a)–5(a). The solid lines on each plot are a fit to a
two-dimensional potential flow model (see § 4).

3.1. Weak interaction, γ = 2

Figure 2 shows two bubbles created at a distance of 140 μm (circles in first frame).
Their maximum radii Rmax are about 35 μm. The bubbles’ centres have moved 5 μm
away from each other during the time of bubble generation and the first recorded
frame. During the shrinkage or collapse of the bubbles attraction is found. They move
approximately 20 μm towards each other. In all but the last frame the bubbles remain
cylindrical. In the last frame the outward edges of the bubbles appear blurred, this is
due to the formation of fast counter-propagating jets (Naudé & Ellis 1961).

3.2. Intermediate interaction, γ =1.3

In figure 3 the bubbles are created 93 μm apart. Here, we see again an initial
displacement of the bubbles’ centres during the expansion which is slightly larger
than that for the previous case. During collapse the total change in distance between
the bubbles, d, is now 35 μm, thus 75 % higher than before. Also, we observe a slight
deformation of the proximal bubble walls. Again, in the last frame the distal bubble
walls of the shrinking bubbles are blurred due to the jet flows.
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Figure 3. (a) Two equally sized bubbles created at a distance of 93 μm. The framing speed
is 450 000 f.p.s. and the frame width is 256 μm. (b) Symbols showing the measured radii as a
function of time for each bubble. (c) Distance between the bubbles’ centres as a function of
time. The solid lines in (b) and (c) are solutions of the two-dimensional potential model.

3.3. Strong interaction, γ = 0.65

Figure 4 shows a bubble pair created at a distance of 46 μm. The bubbles repel during
the first 4 μs. Although the distal bubble walls remain cylindrical the proximal walls
flatten severely forming a straight channel in between. The thickness of this channel
decreases, yet coalescence does not occur for this initial separation. Equivalent radii
of these deformed bubbles are obtained by measuring the area; the centre of each
bubble is taken as their centre of mass. The total reduction in the distance between the
bubbles is more than 40 μm, almost covering the entire initial separation between the
bubbles. In the last frame the two counter-propagating jets become vaguely visible.

3.4. Bubbles with unequal sizes

Figure 5 shows two bubbles of different size; the digital hologram is adjusted so
that one of the spots created at the focus of the microscope objective receives less
laser energy, thus leading to a smaller bubble. The initial distance between them is
70 μm. Only four data points are given for the distance because of the early collapse
of the smaller bubble. During the lifetime of the smaller bubble the larger bubble
moves considerably less than the smaller one. The smaller bubble collapses first and
jets towards the larger bubble which is starting to collapse in the fourth frame of
figure 5(a). It is worth mentioning the pointed shape of the large bubble towards the
left in the last frame.
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Figure 4. (a) Two equally sized bubbles created at a distance of 46 μm. The framing speed
is 500 000 f.p.s. and the frame width is 128 μm. (b) Symbols showing the measured radii as a
function of time for each bubble. (c) Distance between the bubbles’ centres as a function of
time. The solid lines in (b) and (c) are solutions of the two-dimensional potential model.

4. Two-dimensional potential flow model
We now model the flow in the centre of the channel to derive equations for

the radial and translational dynamics of arbitrary bubble configurations. The time
needed for vorticity to diffuse from the boundaries to the centre of the channel is
approximated by the time for the displacement thickness to reach to the channel’s
centre τ = y2/(1.722ν), where ν is the viscosity and y is half the height of the liquid
gap (Batchelor 1967). Thus, for these very brief times, t < τ , the flow in the channel’s
centre is not affected by the no-slip boundary conditions as it is decoupled from
the boundary layers; this allows to decompose the flow in a flow at the channel’s
centre and a flow at the boundaries. The latter is a viscosity-dominated boundary
layer flow whereas the central flow is basically irrotational. Thus the flow in the
centre of the channel can be modelled for sufficiently short times with a velocity
potential φ = φ(r, t < τ ) which satisfies the Laplace equation ∇2φ = 0. Inserting the
estimated viscosity of the liquid ν ≈ 1 × 10−6 m2 s−1 (see § 2) and the channel height
of y = 7.5 μm we obtain τ < 19 μs. The online supplementary material presents the
dynamics for bubbles of different sizes, there we see that for larger bubbles with a
lifetime τ of more than 18 μs, it is not possible to ignore the boundary layer. The
consequence is as expected, large bubbles will be affected by viscosity and cannot be
modelled with the potential model derived below.

Viscous effects can also be introduced through the viscous stresses at the bubble
interface. This however, can be safely ignored for low-viscosity liquids used in this
experiment for most of the bubble dynamics, in particular for the inertia-dominated
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Figure 5. (a) Two bubbles created at a distance of 70 μm. The framing speed is 500 000 f.p.s.
and the frame width is 128 μm. The last frame depicts on the left the remains from smaller
bubble after its first collapse. This data is excluded from the graphs. (b) Symbols showing
the measured radii as a function of time for each bubble. (c) Distance between the bubbles’
centres as a function of time. The solid lines in (b) and (c) are solutions of the two-dimensional
potential model.

expansion and collapse phase studied here (Hilgenfeldt et al. 1998). Further we want
to mention that due to the high Reynolds numbers the advection terms in the Navier–
Stokes equation cannot be ignored, thus a Hele-Shaw modelling approach is ruled
out (Batchelor 1967).

4.1. Velocity potential

The derivation of a solution of the Laplace equation is analogues to Lagrangian
formalism presented by Illinskii et al. (2007). There, it has been applied to derive
equations of motion for arbitrary configurations of N oscillating spherical bubbles.
Following their method now in two dimensions we obtain 2N coupled ordinary
differential equations for the bubble radius and its position.

First considering a single bubble labelled i: at the surface of this bubble the fluid
velocity is equal to the radial velocity added to the bubble’s translational velocity;
thus the boundary condition (BC) for the single bubble potential φ0i is

∂φ0i

∂ri

∣∣∣∣
ri=Ri

= Ṙi + U i , · ni , (4.1)

where Ṙi is the radial velocity, Ui the translational velocity and ni is the surface
normal. Following the ansatz (Luther et al. 2000; Illinskii et al. 2007) the potential
can be split into a monopole and dipole terms φ(ri )0i = a log(ri/R∞) + b/ri . Here,
R∞ is a normalization constant for the argument of the logarithmic term and is later
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identified as the distance at which the velocity drops to zero, i.e. to limit the kinetic
energy of the system (Lohse et al. 2004; Zwaan et al. 2007). We obtain the functions
a and b by implementing BC (4.1), thus the single bubble potential reads

φ0i(r i) = RiṘi log

(
ri

R∞

)
− R2

i Ui · ni

ri

. (4.2)

To construct the potential for N interacting bubbles we sum over all potentials
(Illinskii et al. 2007) φ(ri ) =

∑
i φ0i(ri ) = φ0i(ri ) +

∑
i �=k φ0k(rk) and write it as a

Taylor series of first order

φ(ri ) = φ0i(ri ) +
∑
k �=i

φ0k(rki + r i) = φ0i(r i ) +
∑
k �=i

[φ0k(rki ) + cki · ri + · · ·], (4.3)

where rki = r0i − r0k, and

cki =

(
∂φ0k(rk)

∂rk

) ∣∣∣∣
rk=rki

=
RkṘk

rki

nki − R2
k

r2
ki

[Uk − 2(Uk · nki)nki ] (4.4)

To satisfy BC (4.1) corrections are needed to cancel the terms cki · ni in (4.3). This
can be achieved by adding φ1i(ri ) = (R2

i /ri)cki · ni to the right-hand side of (4.3). The
potential now reads φ(ri ) = φ0i(ri ) + φ1i(ri ) +

∑
k �=i[φ0k(rki ) + cki · ri + φ1k(rki )].

The kinetic energy of the liquid K can be expressed as K = (ρ/2)
∫

S
|∇φ|2dS =

−(ρ/2)
∑

i

∫
li
φ(∂φ/∂ri)dli , where S is the surface over whole liquid domain, and li

are the contours of the cylindrical bubbles. Implementing BC (4.1) the kinetic energy
becomes K = −(ρ/2)

∑
i

∫
li
(Ṙi + Ui · ni )φdli . To calculate the kinetic energy, the

potential on the surface of the ith bubble has to be evaluated. For the Lagrangian we
need additionally the potential energy V in two dimensions, thus V =

∫
pdS. Here, we

neglect the gas and vapour pressure inside the bubble and also surface tension. Then,
the potential energy simplifies to V =

∑
i πR2

i p0, where p0 is the ambient pressure.

4.2. Lagrangian equation

Combining the kinetic energy K and the potential energy V we obtain the Lagrangian

L =
∑

i

1

2
πR2

i ρUi
2 −

∑
i,k,i �=k

RiRkṘiṘkπρ log

(
Ririk

R2
∞

)

+
∑

i,k,i �=k

RiRk

rik

[
RiṘk(Ui · ni k) + RkṘi(Uk · nki )

]
−

∑
i

πR2
i p0. (4.5)

The equations of motion for the system are derived from the Lagrangian equations;
thus for the radial dynamics d(∂L/∂Ṙi)/dt = ∂L/∂Ri, and d(∂L/∂ṙ0i)/dt = ∂L/∂r0i

for the translational dynamics.

4.3. Equations of motion for bubble radii

From the Lagrangian we obtain the following equation:

(
R̈iRi + Ṙ2

i

)
log

(
Ri

R∞

)
+

Ṙ2
i

2
=

p

ρ
− Ui

2

2
−

∑
k �=i

(R̈kRk + Ṙ2
k ) log

(
rik

R∞

)
. (4.6)

This is a two-dimensional Rayleigh equation (Rayleigh 1917) for a single bubble in
two dimensions with additional pressure terms on the right-hand side. The second
term on the right-hand side of (4.6) Ui

2 is a dynamic pressure reduction of the
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Figure 6. Comparing the radial dynamics of a single bubble (black diamonds) with those of
similar interacting bubbles. For clarity, we removed the error bars which have a size of ±2 μm.
The lines joining the points are placed to guide the eye.

moving bubble and the last on the right-hand side of (4.6) is the imposed pressure
from neighbouring bubbles. This term couples the radial motion with the translational
motion. Please note that for the derivation of (4.6) terms of the order O(r−1

ik ) are
neglected as those are much smaller than the dominant log(rik/R∞).

4.4. Equations of motion for bubble position

The equation of motion for the bubble position is

r̈0i = −2ṘiUi

Ri

+
∑
k �=i

nki

(
RkR̈k + Ṙ2

k

)
rki

. (4.7)

The second term of (4.7) is due to the interaction with all other bubbles k �= i, thus
it is related to the secondary Bjerknes force. It scales as 1/rik which is in contrast to
the three-dimensional case where it depends on the inverse square of the distance.

The model assumes zero pressure inside the bubble; it ignores thermodynamics or
mass transfer inside the bubble. This assumption does surely not hold during the
early bubble expansion which is driven by superheated liquid explosively expanding
into a vaporous cavity. Also during this stage the bubble cannot be described with as
two-dimensional cavity. We limit our model to the later stages of expansion where the
bubble has cooled and is sufficiently flat to be considered two-dimensional. Thus, we
model the bubble expansion with an already cylindrical bubble and an initial radial
velocity Ṙ.

5. Discussion
5.1. Bubble lifetime

The experiments in § 3 reveal that the radial and translational dynamics are greatly
altered by the mutual interaction. To unravel this further we directly compare the
single bubble dynamics with bubble pairs of similar radius. This is experimentally
achieved by using the same hologram and by blocking one of the foci, thus keeping
the laser energy per bubble unchanged.

This comparison is shown in figure 6 for different separations. All bubbles reach a
maximum radius of about 35 μm, the single bubble collapses first (filled diamonds),
about 11 μs after creation which is significantly shorter than all bubble pairs. The
lifetime of the pairs increases with decreasing stand-off distance.
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5.2. Comparison with experiments

After presenting the experimental results for bubble pairs in figures 2–5 we now
want to compare them with the model derived in § 4. The initial conditions for
the translational and radial dynamics are needed to integrate the equations of
motion because we ignore the early stage of the bubble formation. The initial
values for bubble radius and bubble position are obtained from the experimental
data. The initial conditions for the bubble wall and the translational velocities,
Ṙ1 and ḋ = 2ṙ01, are obtained by least-square fitting of (4.6) and (4.7) to the
experimental data. Also a unique value for R∞ for our experimental configuration
has to be obtained. Therefore, we fitted the measured radius time curves from single
bubbles, e.g. the one presented in figure 6, to a two-dimensional Rayleigh equation
(RR̈ + Ṙ2) log(R/R∞) + Ṙ2/2 = (p0/ρ). The best fit is R∞ = 546 μm and is used for all
curves presented in this work.

The model describes the observed dynamics for all bubble pairs studied. In
particular, even the dynamics of the strongly deformed bubbles (strong interaction
with γ = 0.65, see figure 4) is nicely captured within the measurement errors. Here,
instead of the bubble radius, an equivalent radius is used still giving good agreement
with the cylindrical model. It is interesting to note (see figures 2–4) that the reduction
of the distance d during the collapse increases as the bubbles are created closer which
is consistent with the secondary Bjerknes force.

Bremond et al. (2006b) used hydrophobic microcavities etched in silicon wafers
to study arbitrary bubble configurations and compare the dynamics with the three-
dimensional coupled Rayleigh equations. They obtained very good agreement with
this simple ansatz, although for close range interaction a boundary integral method
was applied (Bremond et al. 2006a). In a two-dimensional geometry bubble interaction
has a longer range (1/d) as compared to the three-dimensional Bjerknes force (1/d2).

6. Conclusions
We recorded the dynamics of two bubbles created at different distances in an

essentially two-dimensional geometry. By varying the distance at which the bubbles
were created we were able to ‘tune’ the interaction between the bubbles from a weakly
to a strongly interacting regime. A two-dimensional flow potential model is derived
from the Lagrangian of the coupled bubble system. The model accounts for radial and
translational dynamics for arbitrary configurations of cylindrical bubbles. The radial
dynamics is a Rayleigh equation with additional terms due to the mutual interactions.
The model is in very good agreement with the experimental results. Future studies
will involve specific bubble configurations of interest in microfluidics, in particular
for object manipulation, microrheology and mixing applications.

We appreciate the discussions on the experimental realizations with Vasan
Venugopalan (University of California, Irvine), and thank Roberto Gonzalez for
the viscosity measurement. The authors gratefully acknowledge funding through
the Ministry of Education, Singapore (T208A1238) and Nanyang Technological
University through grant RG39/07.
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